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Abstract: Janus-type liquid-crystalline fullerodendrimers were synthesized via the 1,3-dipolar cycloaddtition
of two mesomorphic dendrons and C60. By assembling poly(aryl ester) dendrons functionalized with
cyanobiphenyl groups, displaying lamellar mesomorphism, with poly(benzyl ether) dendrons carrying alkyl
chains, which display columnar mesomorphism, we could tailor by design the liquid-crystalline properties
of the title compounds as a function of each dendron size. The liquid-crystalline properties were examined
by polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Depending on the
dendrimer generations, smectic (SmC and/or SmA phases) or columnar (Colr-c2mm or Colr-p2gg phases)
mesomorphism was obtained. The supramolecular organization is governed by (1) the adequacy of the
cross-sectional area of the dendrons, (2) the microsegregation of the dendrimer, (3) the deformation of the
dendritic core, and (4) the dipolar interactions between the cyanobiphenyl groups. Comparison of the
mesomorphic properties of two fullerodendrimers with those of model compounds (fullerene-free analogues)
indicated that the C60 unit does not influence the type of mesophase that is formed. Molecular properties
determined in solution (permanent dipole moment, specific dielectric polarization, molar Kerr constant)
confirm that microsegregation persists in solution and strengthen the models proposed for the structure of
the mesophases.

Introduction

The successful development of elegant and effective syntheses
for the precise functionalization of [60]fullerene (C60), associated
with its exceptional photophysical1 and electrochemical2 proper-
ties, has initiated exciting fields of research in materials science
(e.g., photoactive dyads, triads, and polyads, plastic solar cells,
organic light emitting diodes).3

Organized molecular assemblies are an important class of
supramolecular materials. Selective functionalization of C60 has
enabled the design of Langmuir and Langmuir-Blodgett films,4

vesicles,5 self-assembled monolayers,6 and liquid crystals.7-12

The search for mesomorphic materials displaying novel proper-

ties is a prerequisite for the development of liquid crystal
technology by the “bottom-up” approach. Of particular interest
are functionalized liquid-crystalline materials which combine
the self-organization characteristics of liquid crystals with the
properties (redox, magnetic, optical, chiroptical) of the functional
entity. In this respect, C60 is an excellent unit for the design of
photo- and electroactive liquid crystals.

Four approaches have been reported for the design of
fullerene-containing thermotropic liquid crystals. First, addition
of liquid-crystalline addends7,8,11to C60 by applying either the
Bingel reaction13 or the 1,3-dipolar cycloaddition reaction14

produced mesomorphic methanofullerenes or fulleropyrrolidines,
respectively. Nematic, chiral nematic, smectic A, smectic B,
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and columnar phases were observed. The second approach
involves the formation of noncovalent complexes: reaction of
a liquid-crystalline cyclotriveratrylene with C60 provided a
complex that displayed nematic and cubic phases,12a while a
spin-coated dendritic porphyrin and C60 gave a nonidentified
columnar phase.12b In the third approach, grafting of five rodlike
aromatic units around one pentagon of C60 provided cone-shaped
molecules that showed either columnar9a or lamellar9b phases.
In the fourth approach, a 1:1 mixture of two nonmesomorphic
compounds (i.e., a methanofullerene derivative and a disclike
molecule) showed the formation of a columnar phase.10

The first approach is the most versatile one, owing to the
large variety of liquid-crystalline addends that can be grafted
onto C60. Furthermore, the use of dendrimers for the design of
mesomorphic materials (e.g., dendritic liquid-crystalline
methanofullerenes7a,b and dendritic liquid-crystalline fullero-
pyrrolidines)7f,h is appealing because specific structural features,
such as the generation, the multiplicity of the branches, the
connectivity, flexibility, and polarity, can be adjusted to fine-
tune the liquid-crystalline behavior.

Glycine and sarcosine (N-methyl glycine) have predominantly
been used to construct liquid-crystalline fulleropyrrolidines.
However, the use ofN-substituted glycines enabled the intro-
duction of a second addend onto C60 leading to liquid-
crystalline fullerene-OPV conjugates7c and liquid-crystalline
fullerene-ferrocene dyads.7d,g If the second addend is a meso-
morphic dendrimer, liquid-crystalline fullero(codendrimers) or,
in other words, liquid-crystalline Janus-type fulleropyrrolidines
are obtained.

There are clearly more methods available for the control of
the liquid-crystalline properties of codendrimers than of
dendrimers. For example, when two different dendrons are
assembled, their generation, relative proportions, and location

within the molecule can be varied, and each modification can
be used, in principle, to control the nature of the mesophases.15

By exploiting this modular construction of mesomorphic
macromolecules, we envisioned that the liquid-crystalline
properties of fullero(codendrimers) could be tuned by changing
the generation of the dendrons located on C60. This approach
represents an attractive way for the design of fullerene-
containing liquid crystals with tailor-made mesomorphic proper-
ties. Therefore, the assembly via 1,3-dipolar cycloaddition of
poly(aryl ester) dendrons functionalized with cyanobiphenyl
groups with poly(benzyl ether) dendrons carrying alkyl chains
was attempted. These dendrimers were selected with the
expectation that their different structural characteristics and
properties would influence the overall liquid-crystalline be-
havior. In such structures, C60 is hidden in the organic matrix,
and the supramolecular organization should only depend on the
dendrons and should not be altered by the presence of the
isotropic C60 hard sphere. Furthermore, owing to the different
nature of the dendrons, microsegregation should be obtained,
leading to long-range organization within the liquid crystal state.

We describe, herein, the synthesis, characterization, meso-
morphic properties, and supramolecular organization of fullero-
(codendrimers)1-6 (Charts 1 and 2) and demonstrate the key
role played by the association of the selected dendrons on the
formation, structure, and nature of the mesophases. Two model
compounds,MC-I and MC-II (Chart 3), which are the
fullerene-free analogues of5 and1, respectively, were used to
put to the fore a possible influence of C60 on the liquid-
crystalline behavior and supramolecular organization. Finally,
the solution properties (permanent dipole moment, specific
dielectric polarization, and molar Kerr constant) of dendrons
13 and17 and corresponding fulleropyrrolidine3 were inves-
tigated to establish the influence of each dendron on the overall
behavior of the title compounds. All the dendrons described
herein were synthesized via a convergent approach.16

Results and Discussion

Design. This study focuses on the combination of either
second (10, Scheme 1) or third (15, Scheme 2) generation poly-
(benzyl ether) dendrons with first (16, Scheme 3), second (17,
Scheme 4), or third (18, Scheme 5) generation poly(aryl ester)
dendrons. Thus, six fullero(codendrimers) were prepared and
classified within two series according to their mesomorphic
properties, that is, compounds1-3 for the first series (Chart 1,
columnar mesomorphism) and compounds4-6 for the second
series (Chart 2, smectic mesomorphism).

Synthesis.Preparation of1-6 (Charts 1 and 2) requires the
synthesis of the dendritic-typeN-amino acid derivatives10
(Scheme 1) and15 (Scheme 2). Synthesis of16-18 has
previously been published,7f and compounds7 and 11 were
prepared as described in the literature.17a
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Etherification of 3,5-dihydroxybenzaldehyde with7 led to8
(Scheme 1). Reductive amination of8 with glycine methyl ester
and NaBH3CN gave9, which was hydrolyzed to furnish second-
generation amino acid derivative10. The third-generation amino
acid derivative15 was prepared from benzyl alcohol intermedi-
ate 11 (Scheme 2). Chlorination of11 gave 12, which was

reacted with 3,5-dihydroxybenzaldehyde to give aldehyde13.
Reductive amination of13 with glycine methyl ester and
NaBH3CN gave 14, which was hydrolyzed to amino acid
derivative15.

Addition of 10 and 16 to C60 led to 1 (Scheme 3).
Fulleropyrrolidines2-6 were prepared analogously from the

Chart 1
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corresponding aldehyde and amino acid dendrons, that is,15
+ 16 f 2 (Scheme 3),15 + 17 f 3 (Scheme 4),10 + 17 f
4 (Scheme 4),10 + 18 f 5 (Scheme 5), and15 + 18 f 6
(Scheme 5).

Model compoundsMC-I and MC-II were prepared by
esterification of second-generation poly(benzyl ether)-CO2H

dendron17awith either third- or first-generation poly(aryl ester)-
OH dendron,7f respectively.

The structure and purity of all compounds were confirmed
by 1H NMR spectroscopy, GPC (all compounds were mono-
disperse), and elemental analysis. The UV-vis spectra of1-6
are in agreement with the fulleropyrrolidine structure.1

Chart 2
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Liquid -Crystalline Properties. The mesomorphic and
thermal properties of the poly(benzyl ether) aldehydes8 and
13, N-substituted gylcine methyl esters9 and14, fulleropyrro-
lidines 1-6, and model compoundsMC-I and MC-II were
investigated by polarized optical microscopy (POM) and dif-
ferential scanning calorimetry (DSC). The phase transition
temperatures and enthalpies are reported in Table 1. The
mesophases displayed by1-6, MC-I , andMC-II were char-
acterized by X-ray diffraction (XRD). The properties of aldehyde
derivatives16-18 have previously been reported, all demon-
strating a smectic A phase.7f The liquid-crystalline behavior
of 10 and 15 was not investigated as the products were only
purified by precipitation.

The aldehyde derivatives (8 and13) andN-substituted glycine
methyl ester derivatives (9 and 14) formed columnar phases.
The latter were identified by POM from the formation of
pseudo-focal conic textures (Figures S1-S4). Compound9 gave
an additional cubic phase, identified by the formation of a
viscous, isotropic fluid. Thus,8, 9, 13, and14 showed liquid-
crystalline behavior typical of poly(benzyl ether) dendrimers.17

From the point of view of their liquid-crystalline properties,
1-6 can be classified within two families: compounds1-3,
which gave rise to columnar phases, and compounds4-6, which
showed smectic phases. Centered (c2mm) (1 and3) or noncen-
tered (p2gg) (2) rectangular columnar phases were obtained for

1-3, and smectic A (5 and6) or smectic A and smectic C (4)
phases were observed for4-6. The columnar (pseudo-focal
conic texture), smectic A (focal conic and homeotropic textures),
and smectic C (focal conic and Schlieren textures) phases were
identified by POM (Figures S5-S7). As an illustrative example,
the DSC thermogram of2 is shown in Figure S8.

Comparison of the isotropization temperatures emphasized
the influence of the poly(aryl ester) dendrons on the thermal
stability of the liquid-crystalline phases. Compounds5 and6,
with third-generation poly(aryl ester) dendron, showed the
highest isotropization temperatures (210°C for 5 and 209°C
for 6); in contrast, the size of the poly(benzyl ether) dendron
(second generation for5 and third generation for6) had no
influence on the isotropization temperature. Decreasing the poly-
(aryl ester) dendron generation resulted in a decrease in clearing
point [155°C for 4, and 152°C for 3, both second-generation
poly(aryl ester) dendron], independent of the observed me-
sophase. Finally, the clearing point of1 and2 confirmed that
the poly(benzyl ether) dendron had no influence on the
isotropization temperature (105°C for 1 and 109°C for 2).

The isotropic-to-isotropic liquid transition observed for1 was
detected by DSC. No change in texture was observed by POM.
Identification of this transition was made by XRD (see below).
It is possible that some interactions between molecules persist
through the first isotropic state resulting in some locally

Chart 3
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organized large aggregates, which are no longer present after
the second transition.18

The liquid-crystalline properties of1-6 are dependent on
the respective generation of each dendron. When the generation
of the poly(benzyl ether) dendron is higher than that of the poly-
(aryl ester) dendron, columnar mesomorphism is observed (i.e.,
for 1-3); conversely, when the generation of the poly(aryl ester)
dendron is higher (i.e., for5) than or the same as (i.e., for4
and6) that of the poly(benzyl ether), smectic mesomorphism
is observed. The liquid-crystalline properties of1-6 can thus
be tuned by design.

Supramolecular Organization. Smectic Phases.The X-ray
diffraction patterns of4-6 are characterized by a series of four
to six sharp signals in the small angle region in the 1:2:3:4:5:6
ratio and a diffuse halo in the wide-angle region at about 4.5
Å. These features are characteristic of smectic phases. The
observation of a large number of diffraction peaks is an
indication that the piling of the smectic layers is very well
developed and suggests an effective microsegregation (Table 2
and Figure S9).

From room temperature up to 50°C, the X-ray patterns of4
are typical of an amorphous phase. They exhibit small- and
wide-angle diffuse signals, indicative of a short-range order
structuring. Above this temperature,4 self-organizes into smectic
A and smectic C phases. The layer spacing of4 is almost
constant (d ) 121.5 Å at 75°C down to 117.4 Å at 150°C)
within the temperature range of the mesomorphic domain (Table
S1), despite the smectic C-to-smectic A phase transformation
observed by POM. This behavior indicates that within the
smectic A phase, there is a randomly oriented tilt of the
mesogenic groups with a tilt value similar to that found in the
smectic C phase.19

Compound5 exhibits a lamellar structure from about 70°C
up to the isotropization temperature (210°C). Interestingly, in-
creasing temperature induces a sharpening of the small-angle
diffraction peaks, indicating that the lamellar stacking extends
over larger and larger correlation distances. In addition, the
lamellar spacing decreases smoothly from 128.6 Å (75°C) to
121.4 Å (200°C) (Table S1), in agreement with the temperature
variation of lamellar spacing in a smectic A phase. Below
70 °C, 5 exists in an amorphous (glassy) state characterized by
broad small- and wide-angle signals showing the existence of
a poorly developed lamellar ordering.

The X-ray diffraction patterns of6, up to 140°C, show a
disordered structure (broad and weak equidistant diffraction
signals in the small-angle region and a diffuse halo at 4.5 Å in
the wide-angle region). Such patterns correspond to amorphous
organizations with a low lamellar ordering extending only over
short distances. Above 140°C, X-ray diffraction patterns show
the presence of a smectic structure. The X-ray patterns remain
unchanged up to 200°C (Table S1).

From the above results, two important observations can be
made. Despite the high molecular weight of the materials (5.5

(18) (a) Goodby, J. W.; Waugh, M. A.; Stein, S. M.; Chin, E.; Pindak, R.; Patel,
J. S.J. Am. Chem. Soc.1989, 111, 8119. (b) Goodby, J. W.; Dunmur, D.
A.; Collings, P. J.Liq. Cryst. 1995, 19, 703. (c) Kutsumizu, S.; Kato, R.;
Yamada, M.; Yano, S.J. Phys. Chem. B1997, 101, 10666. (d) Kutsumizu,
S.; Yamaguchi, T.; Kato, R.; Yano, S.Liq. Cryst. 1999, 26, 567. (e)
Nashiyama, I.; Yamamoto, J.; Goodby, J. W.; Yokoyama, H.J. Mater.
Chem.2001, 11, 2690.

(19) (a) de Vries, A.; Ekachai, A.; Spielberg, N.Mol. Cryst. Liq. Cryst.1979,
49, 143. (b) de Vries, A.J. Chem. Phys.1979, 71, 25.

Scheme 1 a

a (i) 3,5-Dihydroxybenzaldehyde, K2CO3, DMF/THF, 70°C, overnight,
82%; (ii) glycine methyl ester hydrochloride, Et3N, THF/MeOH, room
temperature (rt), 1 h, then NaBH3CN, overnight, 70%; (iii) NaOH 4 N,
THF/MeOH, rt, 1 h, then HCl (2 N), 98%.
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to 10.1 kDa) and their a priori noncylindrical molecular shape,
the sharpness and the high number of X-ray reflections indicate
that the dendrimers produce well-developed smectic phases with
thin interfaces between the layers, that is, highly microsegregated
mesostructures (in agreement with conclusions derived from the
solution properties described below). Such microsegregated
structures have been observed for liquid-crystalline dendrimers
such as poly(propylene imine)s, poly(amido amine)s, and poly-
(carbosilane)s functionalized at their periphery with calamitic
mesogens.20 These dendrimers display smectic phases in which
the dendritic core (which can be strongly deformed) occupies a
central sublayer and the mesogenic units are located parallel to
one another, extending up and down from the dendritic core.
Compounds4-6 may appear different because of their more
rigid C60 core and to the polar nature of the dendrimer, since
the mesogenic cyanobiphenyl groups are attached to only one

side of the molecule. Therefore, the smectic layers are likely
stabilized by strong lateral and dipolar interactions between the
cyanobiphenyl mesogenic groups, through the antiparallel
arrangement of the fullerodendrimers forming one central
sublayer, and the poly(benzyl ether) dendrons being ejected to
another sublayer (see below for a detailed description of the
supramolecular organization). Such an intramolecular segrega-
tion occurs above the glass transition, giving enough flexibility
to the poly(benzyl ether) dendron and the aliphatic spacers of
the poly(aryl ester) dendron to deform in order to favor parallel
arrangement of the mesogenic groups, thus producing well-
developed lamellar structures.

The second observation concerns the values of the layer
spacing, which increases only slightly with increasing molecular
weight, and molecular areas. To understand the molecular
organization within the layers, the molecular areas were
calculated from the estimated molecular volumes and layer(20) Donnio, B.; Guillon, D.AdV. Polym. Sci.2006, 201, 45.

Scheme 2 a

a (i) SOCl2, 2,6-di-tert-butyl pyridine, CH2Cl2, rt, 20 min, quantitative yield; (ii) 3,5-dihydroxybenzaldehyde, K2CO3, DMF/THF, 80°C, overnight, 60%;
(iii) glycine methyl ester hydrochloride, Et3N, THF/MeOH, rt, 1 h, then NaBH3CN, overnight, 72%; (iv) NaOH 4 N, THF/MeOH, rt, 45 min, 95%.
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thicknesses. A bilayered structure (molecules arranged head-
to-head) is envisaged, where the central slab of the layer is made
up of the cyanobiphenyl mesogenic groups arranged in an
antiparallel fashion and the aliphatic chains of the poly(benzyl
ether) dendrons pointing out at both interfaces of the layer as
assumed above. In this model, the area available for each
aliphatic chain is, for example, for4, ach ) 24-27 Å2 and that
for each cyanobiphenyl mesogenic groupames ) 37-40 Å2.
The former value is compatible with that found in smectic liquid
crystals for disordered aliphatic chains oriented, on average,
normal to the smectic layers; the latter value is compatible for
mesogenic units tilted with respect to the normal of the layer.
This molecular arrangement is directly related to the number
of aliphatic chains (six) and mesogenic groups (four) within
one molecule of4, knowing that the cross section of both
moieties is roughly the same (about 22-25 Å2). For 5, one
molecule contains six aliphatic chains and eight mesogenic
groups. Thus, the area available for each aliphatic chain isach

) 34-39 Å2 and that for each cyanobiphenyl mesogenic unit
is ames) 26-29 Å2. This implies that the aliphatic chains are,
on average, more spread out to compensate for the increase in
molecular area and that the mesogenic groups are lying normal
to the layer. For6, the ratio of aliphatic chains to the number

of mesogenic groups is the same (1.5) as that for4, leading to
similar values for the corresponding areas available for the
chains (ach ) 22-23 Å2) and cyanobiphenyl mesogenic groups
(ames) 33-34 Å2), and thus to a similar molecular organization.

In summary, the supramolecular organization of4-6 is
governed by (1) the “aliphatic terminal chains/mesogenic
groups” ratio,R, (2) effective intra- and intermolecular lateral
interactions between the cyanobiphenyl mesogenic groups, (3)

Scheme 3 a

a (i) [60]Fullerene, toluene, reflux, overnight; yield: for1, 52%; for2,
51%.

Scheme 4 a

a (i) [60]Fullerene, toluene, reflux, overnight; yield: for3, 49%; for4,
70%. For R, see Chart 2.

Scheme 5 a

a (i) [60]Fullerene, toluene, reflux, overnight; for5, 68%; for 6, 50%.
For R, see Chart 2.

Table 1. Phase Transition Temperaturesa and Enthalpies of
Compounds 8, 9, 13, and 14, Fullerodendrimers 1-6, and Model
Compounds MC-I and MC-II

compd
Tg

(°C) transition
temp
(°C)

∆H
(kJ‚mol-1)

∆H (kJ‚mol-1) per
cyanobiphenyl unit

8 b Col f I 90 6.0
9 b Col f Cub 58 2.4

Cubf I 74 2.2
13 49 Colf I 105 6.0
14 39c Col f I 107 8.4
1 31 Colr-c2mmf I′ 105d

I′ f I 108d 13.9e 7.0
2 b Colr-p2gg f I 109 16.4 8.2
3 b Colr-c2mmf I 152 23.7 5.9
4 b SmCf SmA 116f

SmA f I 155 21.7 5.4
5 b SmA f I 210 46.5 5.8
6 G f SmA 139 6.7 0.8

SmA f I 209 34.7 4.3
MC-I 31 Gf SmA 141 13.0 1.6

SmA f I 209 41.4 5.2
MC-II 23 Gf Colr-c2mm 84 2.4 1.2

Colr-c2mmf I 105 16.9 8.5

a G ) amorphous solid,Tg ) glass transition temperature, SmC)
smectic C phase, SmA) smectic A phase, Col) columnar phase, Colr-
c2mm ) rectangular columnar phase ofc2mm symmetry, Colr-p2gg )
rectangular columnar phase ofp2gg symmetry, Cub) cubic phase, I and
I′ ) isotropic liquids. Temperatures are given as the onset of peaks obtained
during the second heating run (rate: 10°C min-1 if not stated otherwise).
Tg values are determined during the first cooling run.b Not detected.
c Determined during the second heating run.d Rate: 5°C min-1. e Sum of
enthalpies.f Determined by polarized optical microscopy.
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effective segregation of the dendrons, and (4) the deformation
of the dendritic parts to favor parallel arrangement of the
cyanobiphenyl mesogenic groups. In the center of the layer,
the mesogenic groups are either tilted or normal to the smectic
plane, depending onR. In these layers, the C60 units are confined
within well-defined sublayers, located on both sides of the
central layer formed by the cyanobiphenyl groups; the poly-
(benzyl ether) dendritic portion is confined within external
sublayers. The absence of X-ray signals corresponding to the
C60 units suggests the absence of long-range organization and
a random disposition within the sublayers. This arrangement
was confirmed by molecular dynamics calculations. A periodic
molecular model was created for4 from the experimental X-ray
data consisting of a quadratic cell (250× 24.6 × 24.6 Å3)
containing eight molecules arranged in a head-to-head orienta-
tion. This structure was first minimized, and then a molecular
dynamics study was performed at 373 K for 80 ps. The result
of the calculations evidenced a good filling of the available
volume, and the enhancement of the microsegregation was
observed over the entire simulation experiment time, contribut-
ing to the stabilization of the smectic phases. The supramolecular
organization of4 within the smectic A phase is shown in Figure
1.

Let us consider now the case of model compoundMC-I ,
which is the fullerene-free analogue of5. Above 141°C, MC-I
gave rise to a smectic A phase, which was identified by POM
(focal conic and hometropic textures). Small-angle XRD experi-
ments carried out at 160 and 180°C displayed three fine and
sharp reflections in the 1:2:3 ratio indicative of a layered
structure, with a periodicity ofd ) 111.5 Å (Table S2). In the
wide-angle part, a broad and intense halo corresponding to the
molten chains was also detected. The mesophase can thus be
assigned as a classical smectic A phase, which results from the
segregation of the two dendritic parts similarly to the organiza-
tion of 4-6. In addition, a mid-angle diffraction signal,

corresponding to a periodicity ofd ) 24.0 Å, is observed in
the X-ray pattern, which is likely indicative of a short-range
correlation in the direction perpendicular to the layer normal.
Such a fluctuation may arise from strong steric constraints
imposed by the bulky poly(benzyl ether) dendron, which
periodically disrupts the ideal lateral packing and forces the
various sub-blocks to be slightly shifted along the layer normal
to form an “egg-box” structure. Such periodic blocks would
contain ca. 3 molecules. Here, it is interesting to remark that
compounds5 andMC-I present a smectic A structure with a
similar layer spacing (d ) 125.8 and 111.5 Å for5 andMC-I ,
respectively). This indicates that the driving force to establish
the lamellar structure is governed by a rather similar size of
the two dendritic parts (in other words, a smallR value), the
C60 unit playing no significant role in the supramolecular
organization.

Columnar Phases.From room temperature up to about
60 °C, the X-ray patterns of1 are characterized by diffuse
signals, indicative of an amorphous state with no specific
organization. Above this temperature, a rectangular columnar
phase ofc2mm symmetry emerges. This phase, which was
identified by the high number of reflections (Table 3 and Figure
S10), remains unchanged up to 105°C, where it transforms into
a viscous, isotropic phase. However, the X-ray patterns recorded
in this temperature range showed no specific sharp signals,
which would have indicated the formation of a cubic phase.
This phase can be described as the isotropic liquid I′ similar to
that observed by Goodby et al. in systems showing twisted grain
boundary phases or by Kutsumizu et al. in systems showing a
cubic phase.18

From room temperature up to 75°C, 2 is amorphous. Above
this temperature, a structure emerges evidenced by the presence
of two diffuse signals at 100 and 41 Å. At yet higher
temperatures, the number of sharp diffraction signals increases
significantly, which allows the identification of the mesophase
as a noncentered rectangular columnar phase ofp2ggsymmetry
(Table 3 and Figure S10).

The X-ray patterns of3 revealed two transitions, a first one
at about 70°C, which corresponds to a transition from an
amorphous solid to a mesophase, and the second one at about
150°C, which corresponds to the transition from the mesophase
to the isotropic liquid. However, it should be noted that the
mesophase formation kinetics are very slow; at 100°C, the
X-ray signals are wide, and it is only at 120°C that the
mesophase becomes well organized and identified by a large
number of sharp diffraction peaks as a rectangular columnar
phase ofc2mmsymmetry (Table 3 and Figure S10).

As for the first series (i.e., compounds4-6), the supramo-
lecular organizations of1-3 extend over long distances as
evidenced by the presence of the large number of sharp, intense
small-angle X-ray diffraction peaks. This long-range columnar
ordering occurs despite the high molecular weight of the
compounds (4.3-7.7 kDa) and in the absence of any molecular
shape specificity that could lead to the formation of quasi-discs.
In addition, it develops only above certain temperatures in such
a way that the conformation of the aliphatic spacers and the
dendritic moieties can adapt to the most stable condensed phase.
Another feature of interest within this series is the value of the
ratio R, which is 3 for1 and3, and 6 for2. These values are
larger than those of4-6 (0.75-1.5), which exhibit smectic

Table 2. X-ray Characterization of the Mesophases: Indexation of
the Smectic Phases of Fulleropyrrolidines 4-6 and Characteristic
Parameters of the Mesophasesa

compd
T

(°C)
d00l(meas)

(Å)
d00l(theor)

(Å) parameters

4 100 d001 ) 121.5 d001 ) 120.8 VM ) 9102 Å3

d002 ) 60.4 d002 ) 60.4 AM ) 150.7 Å2

d003 ) 40.2 d003 ) 40.25 ach ) 25.1 Å2

d004 ) 30.1 d004 ) 30.2 ames) 37.7 Å2

5 100 d001 ) 125.9 d001 ) 125.8 VM ) 13434 Å3

d002 ) 62.95 d002 ) 62.9 AM ) 213.6 Å2

d003 ) 41.9 d003 ) 41.95 ach ) 35.6 Å2

ames) 26.7 Å2

6 150 d001 ) 136.0 d001 ) 135.7 VM ) 17819 Å3

d002 ) 68.0 d002 ) 67.85 AM ) 262.6 Å2

d003 ) 45.25 d003 ) 45.25 ach ) 21.9 Å2

d004 ) 33.8 d004 ) 33.9 ames) 32.8 Å2

d005 ) 27.15 d005 ) 27.15
d006 ) 22.6 d006 ) 22.6

a d00l(meas) andd00l(theor) are the measured and theoretical diffraction
spacings;d00l(theor) is deduced from the following mathematical expression:
<d> ) 1/Nl × ∑(l‚d00l); l is the miller index,Nl is the number of reflexions,
00l are the indexations of the reflections corresponding to the smectic phases,
andd is the periodicity,AM is the molecular area (AM ) 2VM/d), andach
and ames are the cross section of one chain of the dendrimer and of one
cyanobiphenyl group, respectively. The molecular volume was calculated
from the equationVM ) VC60 + Mdend/(d × 0.6022), whered ) VCH2(T0)/
VCH2(T), Mdend is the molecular weight of the dendritic part,VCH2(T) )
26.5616+ 0.02023T (T in °C, T0 ) 25 °C), the volume of a methylene
group, andVC60 is the volume of C60 (700 Å3).
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phases, and are consistent with an induced curvature in the
structure, leading to columnar phases, as, for example, with
polycatenar liquid crystals.21

To understand the supramolecular organization of1-3 in the
columnar phases, the number of molecules per unit length along
the columnar axis was calculated from the rectangular lattice

parameters and the estimated molecular volumes (Table 3). A
columnar slice of 10 Å thickness (corresponding roughly to the
diameter of C60) contains 14 molecules of1 and 10 molecules
of the larger dendrimers2 and3. The postulated model of the
molecular organization (Figure 2) is derived from that of the
lamellar organization of4-6. Since the number of aliphatic
chains in 1-3 is larger than the number of cyanobiphenyl
mesogenic groups, the transverse molecular areas of both
molecular moieties are significantly different, and therefore a
stable lamellar structure cannot be obtained. IncreasingR
destabilizes the layering by breaking the layers into ribbons as
previously observed for the lamellar-to-columnar phase transi-
tion exhibited by biforked liquid crystals,22 carbosilane den-
drimers of fifth generation,23 and statistical liquid-crystalline

(21) Nguyen, H. T.; Destrade, C.; Maltheˆte, J.AdV. Mater. 1997, 9, 375.
(22) Guillon, D.; Heinrich, B.; Ribeiro, A. C.; Cruz, C.; Nguyen, H. T.Mol.

Cryst. Liq. Cryst. 1998, 317, 51.

Figure 1. Postulated supramolecular organization of4 obtained by molecular dynamics. Compounds5 and6 gave similar results.

Table 3. X-ray Characterization of the Mesophases: Indexation of
the Columnar Phases of Fulleropyrrolidines 1-3 and
Characteristic Parameters of the Mesophases at Representative
Temperaturesa

compd
T

(°C)
dhk(meas)

(Å)
dhk(theor)

(Å) parameters

1 75 d20 ) 107.6 d20 ) 107.6 Colr-c2mm
d11 ) 81.75 d11 ) 81.75 a ) 215.2 Å
d31 ) 55.8 d31 ) 55.7 b ) 88.35 Å
d40 ) 53.7 d40 ) 53.8 S) 9506 Å2

d02 ) 44.1 d02 ) 44.2 VM ) 6825 Å3

d51 ) 38.7 d51 ) 38.7 N ) 14
d60 ) 35.75 d60 ) 35.9
d42 ) 34.0 d42 ) 34.15

2 90 d20 ) d11 ) 98.6 d20 ) d11 ) 98.6 Colr-p2gg
d21 ) 74.0 d21 ) 74.5 a ) 197.2 Å
d31 ) d02 ) 56.5 d31 ) d02 ) 56.9 b ) 113.85 Å
d22 ) 49.1 d22 ) 49.3 S) 11226 Å2

d41 ) 45.6 d41 ) 45.25 VM ) 10665 Å3

d32 ) 42.9 d32 ) 43.0 N ) 10
d51 ) d42 ) d13 ) 37.1 d51 ) d42 ) d13 ) 37.3
d33 ) 33.4 d33 ) 32.9

3 120 d20 ) 120.1 d20 ) 120.1 Colr-c2mm
d11 ) 104.25 d11 ) 104.25 a ) 240.2 Å
d31 ) 65.4 d31 ) 65.8 b ) 115.7 Å
d40 ) 59.75 d40 ) 60.0 S) 13896 Å2

d51 ) 44.2 d51 ) 44.4 VM ) 13074 Å3

d42 ) 40.8 d42 ) 41.6 N ) 10

a dhk(meas) anddhk(theor) are the measured and theoretical diffraction
spacings;dhk(theor) is deduced from the following mathematical expression:

1/dhk ) x(h2/a2+k2/b2); hk are the indexations of the reflections corre-
sponding to the rectangular symmetry, anda andb are the lattice parameters
of the Colr phase,S is the columnar cross section (S ) 1/2‚a × b). The
molecular volume was calculated from the equation:VM ) VC60 + Mdend/
(d × 0.6022), whered ) VCH2(T0)/VCH2(T), Mdend is the molecular weight
of the dendritic part,VCH2(T) ) 26.5616+ 0.02023T (T in °C, T0 ) 25
°C), the volume of a methylene group, andVC60 is the volume of C60 (700
Å3). N is the number of molecular equivalents per slice of column 10 Å
thick.

Figure 2. Postulated supramolecular organization of1 within the rectan-
gular columnar phase ofc2mmsymmetry. Compounds2 (Colr-p2gg) and
3 (Colr-c2mm) gave a similar organization. For the symmetry of the Colr-
p2gg phase, see Figure S11.
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codendrimers.24 Intrinsically, each columnar core is made up
of mesogenic groups interacting through the cyanobiphenyl
groups and is surrounded by the poly(benzyl ether) dendrons
including the C60 units.

Thus, as for compounds4-6, the supramolecular organiza-
tions of 1-3 are also governed by the ratioR, the microseg-
regation, the core deformation, and the specific interactions
between the cyanobiphenyl groups. A competition occurs
between the tendency of the cyanobiphenyl subunits to form
layers via a head-to-head arrangement and the bulky dendrons
forcing a columnar arrangement. This competition is dominated
by the bulky dendrons evidenced by the presence of strong layer
undulations with large amplitudes which result in the destruction
of the layers into ribbons. ForR ) 3, the average columnar
cross section resembles that of a bow tie, and the optimal
organization is a centered lattice (i.e., for1 and3). However,
asR increases, the cross section becomes more circular (large
dendrons), generating a noncentered lattice (i.e., for2).

Within the supramolecular organizations, molecular ag-
gregates are formed and arranged into columns. Strong micro-
segregation between incompatible regions results in each
constitutive part being confined to a specific region: the
cyanobiphenyl subunits form the columnar center and the
dendrons form the surrounding crown. The C60 units are
localized at the interface along theb-direction (the shortest one).
The absence of X-ray signal corresponding to C60 suggests a
loose disposition of the latter.

This arrangement was confirmed by molecular dynamics
calculations on1. A periodic molecular model was created from
the XRD data and consisted of a nearly quadratic cell (210×
200× 10 Å3), where 10 Å correspond to the thickness of one
virtual slice and the C60 diameter: 14 molecules were placed
in a head-to-head fashion, and the structure was first minimized.
A molecular dynamics study was then performed at 348 K for
80 ps. The result of the calculations evidenced good filling of
the available volume, and enhancement of the microsegregation
was observed over the entire simulation time, contributing to
the stabilization of the columnar phases.

It is of interest to consider now model compoundMC-II ,
which is the fullerene-free analogue of1. MC-II gave rise to a
rectangular columnar phase ofc2mmsymmetry between 84 and
105 °C, with lattice parametersa ) 237.8 Å andb ) 77.75 Å
(Table S4). Moreover, an additional short-range periodicity was
measured in thec-direction, indicative of some columnar
fluctuations or undulations. This periodicity of about 26.5 Å
would correspond to the length of a columnar bundle (about
40 molecules) of a periodically pinched column. Thus,1 and
MC-II exhibit the same columnar structure with similar lattice
parameters. This indicates that the supramolecular organization
is, once more, imposed by the dendritic parts, the size of which
is very different (in other words, a highR value), whatever the
presence or not of the C60 unit.

In summary, the model compounds and their fullerene
analogues gave rise to similar mesomorphism (nature of
mesophases and clearing points). This result indicates that, in
1-6, the C60 unit does not dictate the overall molecular shape
as for homodendrimers also based on poly(benzyl ether)

dendrons.25 In the latter case, the presence of C60 led to spherical
structures, which did not display mesomorphism. The beneficial
effect of codendritic architectures to generate mesomorphism
for fullerodendrimers is therefore clearly demonstrated by
1-6.

Solution Properties.To estimate the effect of each dendron
on the molecular properties of the fullerodendrimers, the solution
properties of3, 13, and17 (Table 4) were examined in benzene.
The permanent dipole moments (µ) of 3, 13, and 17 were
measured by the Guggenheim-Smith method.26 This method
is derived from the experimental determination of the dielectric
permittivity increment (ε - εo)/c, where (ε - εo) is the difference
between the dielectric permittivity of the solution and solvent,
and on the determination of the squared refractive index
increment (n2 - no

2)/c, wheren andno are the refractive indices
of the solution and solvent, respectively, andc is the solute
concentration. The dipole moments (µ) were calculated accord-
ing to eq 1.27

Linear concentration dependencies of (ε - εo) (Figure S12) and
(n2 - no

2) (Figure S13) were observed. The increments (ε -
εo)/c and (n2 - no

2)/c were determined from the gradients and
are reported in Table 4.

Electrooptical molar Kerr constants (KM) of 3, 13, and 17
were obtained according to eq 2.28

The variation of optical birefringence (∆n) as a function ofE2

was determined for different concentrations of17 (Figure S14).
No deviation from Kerr law (according to which, optical
birefringence (∆n) increases linearly withE2 in molecular
dispersed liquids) was observed. Similar results were obtained
for 3 and13.

From the variation of (∆n - ∆no/E2c) as a function of
concentration (Figure S15), the (∆n - ∆no/E2c)cf0 values were
obtained atc ) 0 for 3, 13, and17 and used for the calculation
of KM according to eq 2.

(23) Richardson, R. M.; Ponomarenko, S. A.; Boiko, N. I.; Shibaev, V. P.Liq.
Cryst. 1999, 26, 101.

(24) Rueff, J.-M.; Barbera´, J.; Donnio, B.; Guillon, D.; Marcos, M.; Serrano,
J.-L. Macromolecules2003, 36, 8368.

(25) Scanu, D.; Yevlampieva, N. P.; Deschenaux, R.Macromolecules2007,
40, 1133.

(26) Oehme, F.Dielektrische Messmethoden zur quantitatiVen Analyse und fu¨r
Chemische Strukturbestimmungen;Verlag Chemie: Weinheim, Germany,
1962.

(27) NA, Avogadro’s number;M, molecular mass of the solute;k, Boltzmann
constant;T, temperature in Kelvin.

(28) ∆n - ∆no, difference between the optical birefringence of the solution
(solute of concentrationc) and solvent, respectively;E, strength of the
electric field. The value (∆n - ∆no/E2c)cfo is determined for an infinite
dilution.

µ2/M )
27kT[(ε - εo)/c - (n2 - no

2)/c]/[4πNA(εo
2 + 2)2] (1)

Table 4. Molecular Weight (M), Hydrodynamic Diameter (dh),
Permanent Dipole Moment (µ), Molar Kerr Constant (KM),
Dielectric Permittivity Increment [(ε - εo)/c], and Squared
Refractive Index Increment [(n2 - no

2)/c] of 3, 13, and 17

compd
M

(Da)
dh
(Å)

µ
(D)

KM 108

(cm5 (300 V)-2 mol-1)
(ε − εo)/c
(cm3 g-1)

(n2 − no
2)/c

(cm3 g-1)

3 7679 45( 5 19.2( 0.8 5.5( 0.3 6.2( 0.2 0.13( 0.01
13 4228 33( 5 6.4( 0.5 0.4( 0.1 1.3( 0.1 0.09( 0.01
17 2733 34( 4 14.2( 0.9 4.5( 0.3 9.4( 0.3 0.10( 0.01

KM )
6n0M

(n0
2 + 2)2(ε0 + 2)2 (∆n - ∆n0

E2c )
cf0

(2)
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The hydrodynamic molecular diametersdh (Table 4) were
calculated using the molecular translation diffusion coefficients
D measured in benzene at 25°C.29 These calculations are based
on the spherical model of molecules according to the Stokes-
Einstein eq 3.30

The data reported in Table 4 indicate that the permanent dipole
moment (µ) and Kerr constant (KM) values of13 (carrying
aliphatic chains) and17 (carrying cyanobiphenyl groups) are
in agreement with their structure and polarity.

Knowing that molar Kerr constants (KM) are additive in
solution, when the elecrooptical properties of specific fragments
of a molecule are known, it is possible to verify the degree of
freedom of those fragments within the molecule.29 TheKM value
for 3 can be calculated from eq 4 using the molar Kerr constant
values of13 and17 and their corresponding weight fractions
w1 ) 0.55 andw2 ) 0.36 in3.

According to eq 4, the calculatedKM value for3 is 1.9× 10-8

cm5 (300 V)-2 mol-1, which is significantly smaller than the
experimental value (Table 4). This result reveals that the
rotational freedom of the two dendritic fragments is limited by
the rigidity of the fulleropyrrolidine unit. The fact that the dipole
moment value of3 is approximately equal to the sum of the
dipole moment values of both dendrons (Table 4) provides
further evidence of the structural rigidity of3. This situation is
reached because in compound3 dendrons13and17are rigidly
linked and rotate synchronically in the external electric field.

The hydrodynamic dimensions (dh) of 13and17are identical,
within experimental error (Table 4), indicating that13 is more
folded than17. Considering the differences in molecular weight
and permanent dipole moments of each dendron, the properties
of 3 would indicate a nonequivalent distribution of mass and
polarity, whereby the molecule is made up of a heavier part

(subunit13) and a more polar part (subunit17) of similar sizes.
Such a structural specificity should be responsible for the
molecular packing and microsegregation discussed above.

Conclusion

We have demonstrated that the 1,3-dipolar addition is an
efficient reaction for the synthesis of fullero(codendrimers). This
reaction permits the design of a great variety of functional
macromolecules with sophisticated structures. In this study, a
poly(benzyl ether) dendron, which displays columnar meso-
morphism, was linked to a poly(aryl ester) dendron, which
shows smectic mesomorphism. Depending on the respective size
of each dendron, either smectic or columnar phases were
obtained. Therefore, tuning of the mesomorphism for fullerene-
containing liquid crystals is successfully reachedby design. XRD
investigations, molecular modeling, and solution studies revealed
that the supramolecular organization of the title compounds is
governed by (1) the “aliphatic terminal chains/mesogenic
groups” ratio, (2) the effective lateral interactions between the
cyanobiphenyl mesogenic groups, (3) the effective microseg-
regation of the dendrons, and (4) the deformation of the dendritic
core. It is noteworthy that the supramolecular organization
within the mesophases extends over long distances, evidenced
by the presence of a large number of sharp and intense small-
angle XRD peaks. Moreover, typical textures for the mesophases
were observed by POM, textures usually found for low molar
mass liquid crystals. Therefore, both XRD and POM results
confirmed the high degree of organization of the fulleroden-
drimers within the mesophases.
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(29) Tsvetkov, V. N. Rigid-Chain Polymers: Hydrodynamic and Optical
Properties in Solution;Consultants Bureau: New York, 1989.

(30) ηo, viscosity of the solvent.

dh ) kT/3πηoD (3)

KM ) KM1w1 + KM2w2 (4)
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